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Abstract - In Electrical Capacitance Tomography (ECT) the main focus is on the reconstruction of distinct objects
with sharp transitions between the phases. Being inherently ill-posed, the reconstruction algorithm requires some
sort of regularization to stabilize the solution of the inverse problem. However, introducing regularization may
counteract the reconstruction of well-defined contours for grid-based methods. Level set propagation approaches
able to model sharp phase boundaries suffer from high computational demands. In this contribution two different
state-space representations of closed contours based on B-Splines and on Fourier descriptors are investigated.
Both approaches allow to describe the problem with only a small set of state-space variables. Regularization is
incorporated implicitly which can be directly interpreted in the object domain as it relates to smooth contours. To
solve the inverse problem, statistical inversion is performed by means of particle filtering providing the opportunity
to incorporate prior information conveniently and to take measurement uncertainties into account.

1. INTRODUCTION
Electrical Capacitance Tomography (ECT) is a non-invasive image-based technique that aims at estimating the
permittivity distribution (εr-distribution) within closed objects [14]. Such objects are, for instance, pipelines in the
oil industry or chambers and vessels in the food industry. Voltage patterns are applied to the electrodes which are
mounted along the circumference. The resulting potentials which depend on the materials inside the closed object
are measured. Based on these measurements, the spatial material distribution is reconstructed. However, this
reconstruction task is a nonlinear and severely ill-posed inverse problem. A lot of different algorithms have been
developed and applied to tomographic tasks for two-phase flow fields in recent years with the objective to improve
the image quality and to reduce the computational effort in order to approach real-time. Finite Element Methods
(FEM) which are widely in use are not well suited when the reconstruction of phase boundaries is of interest due to
the need of regularization. Regularization simply incorporates some a priori assumption on the material distribution
and is done by adding a regularization term to the original functional to be minimized. The amount of regularization
is crucial for the reconstruction task and, therefore, many different approaches have been proposed [4]. But up to
now there is no universally valid rule to adjust this parameter. Another drawback of regularization for grid-based
methods is that it causes a blurring of object interfaces. However, in process tomography the main focus is on the
identification of distinct objects with sharp boundaries (e.g. gas bubbles in oil). To overcome the problem of blurred
images, different edge preserving methods for finite element based reconstruction techniques have been introduced.
For example, the use of an auxiliary variable permits to linearize the problem and to derive a deterministic algorithm
based on alternate minimizations [7]. Due to the increased computational effort, this method is not applicable for
real-time requirements. To overcome this drawback in case of a two-phase field, various mesh grouping methods
have been proposed (see e.g. [6]). The main disadvantage is that they rely on threshold levels which have to be
found out by trial and error. A different possibility is to use the Boundary Element Method (BEM) instead of
FEM. The inverse problem can then be solved e.g. by applying a numerical level set propagation approach [8].
The method inherently preserves object edges and implements a regularization based on the smoothness of the
level set function. However, the drawback is the computational complexity due to a large number of parameters.
To achieve sharp edges without increased computational effort it is reasonable to describe material boundaries by
means of a parameterized curves. Possible methods to represent the boundary of an object are the use of active
contours [2] or the application of Fourier descriptors [11]. They are especially suitable for dynamic problems
such as streaming fluids. Both methods use low order state-space representations to incorporate model-based
information into a boundary finding process for continuously deformable objects. Object tracking and solving
the inverse ECT problem can be performed by matching the parameters with regard to a minimum error between
measured and predicted potentials. The inverse problem can be solved, for instance, in a least squares sense.

In a scenario where noise sources can be identified and modeled the reconstruction of unknown objects given
uncertain information can be formulated as statistical inference problem. A popular framework to incorporate
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stochastic state transistions and measurements originate from the Bayes rule. One algorithm based on this prin-
ciple is the Kalman Filter (KF). In order to deal with the inherent non-linearity of the measurement equations
within the ECT framework, the Extended Kalman Filter (EKF) has been applied to tomographic tasks [12,13]. Its
applicability is subjected to state vectors that are random Gaussian variables. In addition the occurance of multiple
object hypotheses – as frequently encountered during the reconstruction of dynamical setups – can not be properly
tackled by an algorithm restricted to unimodal Gaussian state vectors. A less restrictive formulation of the Bayes
principle based on Monte Carlo (MC) simulations and a numerical approximation of non-Gaussian state densities
is given by the family of Particle Filters (PFs). In a direct comparison to the EKF the PF offers the possibility of a
non-approximate evaluation of the state transitions – even in the non-linear case – and multimodal state densities.
Another appealing property of PF is their straightforward incorporation of a priori information about the inner state
of a dynamic system. On the downside these advantages come at the cost of additional computations spent in the
density approximation and the management of samples in state space. PF have already been applied to inverse
problems in tomographic applications [5,9] but so far the state space of these reported approaches was setup based
on the set of finite elements used in the reconstruction step. The resulting state vectors are large which directly
impacts the computational costs and real-time performance of the algorithms. The use of low order state space
representations of closed contours enables the application of PF with considerably reduced computational effort.

The remainder of this paper is structured as follows: Section 2 briefly describes the solution of the forward
problem with BEM. The representation of closed contours in state-space by B-Splines and Fourier descriptors is
addressed in Section 3 followed by an introduction of the applied PF in Section 4. The proposed contour models are
used for the reconstruction of two-phase test distributions and compared regarding the achievable reconstruction
performance in Section 5.

2. SOLUTION OF THE FORWARD PROBLEM
In ECT, the forward problem consists of determining the distribution of the electric scalar potentialup for the
active electrode patternp and subsequently the electric field strength and the capacitance for a given permittivity
distribution within the pipe. In each cycle of the applied electrode pattern, two electrodes are active, i.e. a certain
potential is prescribed, while the remaining electrodes are the measurement electrodes. The governing equation is
a Laplace equation with Dirichlet boundary conditions.

∇ · (ε∇up) = 0 (1)

up|Γ0
= u0,p (2)

whereΓ0 are the boundaries, where Dirichlet boundary conditions are prescribed. In the present work, the simu-
lation environment consists of a tube where16 electrodes are placed equidistantly around the circumference and a
conductive shield at ground potential at some distance from the tube (Figure 1(a)).

Region of interest

Tube

Electrodes

Grounded shield

(a) Cross-section of the used ECT sensor. (b) Discretization of the pipe.

Figure 1: Cross-section of the ECT sensor with 16 electrodes mounted on a pipe. The outer space is circumvented
by a grounded conductive shielding. On the right, the discretization into linear finite elements of the electrodes,
the tube and the outer space is depicted. Object boundaries in the region of interest are described by boundary
elements.

As neither the geometry nor the material values between the tube and the grounded shield change, it is advan-
tageous to discretize the Laplace equation in this region with finite elements, whereas due to changing geometries
and material values in the interior of the pipe, the BEM is applied [8]. Using the BEM in the region of interest
increases the spatial resolution, since the discretization error due to finite elements is avoided. Figure 1(b) illus-
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trates the discretization of the electrodes, the tube and the outer space with linear triangular finite elements while
the interior of the pipe is one region for the BEM.

3. REPRESENTATION OF CLOSED CONTOURS IN STATE-SPACE
Contours can be described as the boundaries between distinct regions with different properties. In the case of ECT,
regions are distinguished by their distinct permittivity values. The contourC in R2 can be described by means
of a vector-valued functionR → R × R : s 7→ c(s) parameterized bys ∈ [0, 1]. C is closedif and only if
c(0) = c(1) and the Cartesian coordinates(x, y) of a point on the contour are given by the elements ofc(s) as
c(s) = (x(s), y(s))T .
Different representations of contours have been proposed in the literature (see e.g. [11] for an overview). The
common denominator of these contour models is to representC by as few parameters as possible while still meeting
the requirements of the given application. The set of parameters needed to fully describe the contour at any instance
in time is referred to asstateof the model. Taking into account any evolution of the contour over time we can define
the state-space representation of a contour by

xk = f(xk−1,vk−1) (3)

zk = h(xk,wk), (4)

wheref(·) represents the state transition of the statex from timek − 1 to timek subjected to process noise which
is modeled byv. A measurement based on the current statexk subjected to measurement noisew is modeled by
h(·). We are now able to formulate the reconstruction problem in the ECT as the problem of estimating the inner
state (i.e. the current contour) of a dynamic system. In addition to approaches to reconstruct static setups, the use
of dynamic models allows to extend the algorithm towards dynamically changing setups.
The different contour models have been designed in favor of distinct application requirements. In the sequel we
will introduce the B-spline model and Fourier descriptors and their respective applicability to the ECT problem.

3.1. B-Spline Representation
Using splines as representation of contours requires to approximate the true contourC by a linear combination
of spline functions. While we have some freedom in choosing different spline functions, a commonly used set of
basis functionsbn(s) are bicubic functions, wheren = 0, . . . , (N−1) denotes the current index in a representation
usingN basis functions. The resultant model is referred to asB-splinerepresentation ofC:

ĉ =
[

b(s) 0
0 b(s)

] [
qx

qy

]
= U(s)q. (5)

The vectorsqx = (x0, x1, . . . , xN−1)T andqy = (y0, y1, . . . , yN−1)T denote the coordinates of theN con-
trol points and are used as weights for the respective basis functions. The vectorb(s) is given byb(s) =
(b0(s), b1(s), . . . , bN−1(s))T . Thus, a B-spline is represented by a vectorq of size2N . In order to reduce the
number of required parameters we introduce the shape-space representation of B-splines [2]:
The shape space of a contour is given by a linear transformation that maps a shape-space vectorx to a spline vector
q such that

q = Wx + q0, (6)

whereq0 represents a reference shape. Given that the dimension of the shape-spaceNx is usually small compared
to the size of the spline vectorNq = 2N , the shape-space representation results in a noticeable reduction of
parameters. A B-spline now is represented by a reference B-splineq0 and a shape-space vector. TheNx × Nq

shape-matrixW enforces that deviations from the reference spline are restricted to geometrically meaningful
deformations. As an example, the affine transformation has 5 degrees of freedom (d.o.f.) and can be represented
in shape-space via the following transformation:

q =
(

1 0 qx
0 0 0 qy

0

0 1 0 qy
0 qx

0 0

)
x + q0, (7)

where the reference shape vectorq0 = (qx
0

T qy
0

T )T . Figure 2 depicts a reference spline and its possible geometric
deformations based on an affine shape-matrixW as given by eqn. (7). Splines can be applied to problems where
the reference contourq0 and its allowed geometric deformations are known. The restriction to a certain class of
transformations in shape-space results in a high degree of regularization which can be utilized in the reconstruc-
tion process. In addition, splines lends themselves to model shapes stochastically by the introduction of random
variables as elements within the shape-state vectorx. Figure 3(a) depicts a reference spline andM = 5 instances
of this model given that the state vector is comprised Gaussian random variables. Splines fail to properly model
shapes as soon as the current shape can not be represented within the given shape-space.
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(a) (b) (c)

Figure 2: Geometric deformations of a B-spline subjected to an affine transformation (reference spline dashed):
Pure translation (a), rotation (b), and scaling and shear (c).

(a) (b)

Figure 3: Reference contours (dashed) andM = 5 random instances of the two contour models. (a) the B-
spline representation is restricted to geometric deformations based on the shape-matrix. (b) varying the Fourier
descriptors results in random contours not all of which have a physical meaning (see e.g. the dotted contour).

3.2. Fourier Descriptors
An alternative representation of a closed contourC is based on the property that for any closed contour the coordi-
nate functionsx(s) andy(s), respectively, are periodic with a periodT = 1. Therefore, we can approximate both
functions using the Fourier series expansions to obtain

x̂(s) =
ax,0

2
+

1
2π

N−1∑
n=1

(ax,n cos(2πns) + bx,n sin(2πns)) (8)

ŷ(s) =
ay,0

2
+

1
2π

N−1∑
n=1

(ay,n cos(2πns) + by,n sin(2πns)) . (9)

The approximation improves as the number of coefficients in the series representation increases. In this context
the Fourier series coefficients are referred to asFourier descriptorsof the contour.
As opposed to the B-spline representation state transitions of Fourier descriptors in general do not correspond to
any restricted family of geometric transformations of the underlying shape. Thus, the geometric regularization is
less stringent than it is for the B-spline model. However, using Parseval’s theorem the magnitude of the Fourier

descriptorsmx,i =
√

a2
x,i + b2

x,i can be interpreted as the energy of the contour in the given frequency band.

This contour model can, therefore, be used to apply a frequency-dependent convergence criterion as low frequency
components (i.e. the lower order Fourier descriptors) correspond to the coarse shape of the contour and high
frequency components (i.e. the higher order Fourier descriptors) correspond to details of the contour. Figure 3(b)
indicates the variations in shape as a consequence of a stochastic Fourier descriptor model. As opposed to the
B-spline case the Fourier descriptors can result in loops which can not be used for the reconstruction of the objects
under consideration in ECT.
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4. PARTICLE FILTER
According to the Bayesian approach the estimate of the unknown inner statexk of a dynamic system at any
time k is based on the totality of information present up to timek which is available through the measurements
zi, i = 1, . . . , k. Whereas for the Kalman filter the state is modeled using a multi-variate Gaussian distribution,
the PF numerically approximates the potentially multi-modal density of the state vector using the principle of
stochastic sampling: a set ofN points – the samples or particlesx(m) – randomly chosen from the state space and
their respective weightsw(m) can be used to represent a probability density function:

fx(x) ≈ {x(m), w(m)}m=1,...,N (10)

This relation can be used to approximate moments of the true density such as the expected value. In this context,
the dynamic model introduced in section 3 is reformulated using conditional densities:p(xk|xk−1) denotes the
state transition density andp(zk|xk) is used as measurement model. The PF keeps track of the current state esti-
matep(xk|Zk), whereZk = {z1, . . . , zk} denotes the measurement history, in an iterative process.

Prediction: Prior to a measurement the state transition model is applied to predict the statep(xk|Zk−1) at timek
using the Chapman-Kolmogorov equation

p(xk|Zk−1) =
∫

Ω

p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (11)

Numerically the conditional densityp(xk|Zk) is represented using the sample setS = {x(m)
k , w

(m)
k } where

m = 1, . . . , N . As indicated in Figure 4, the prediction step comprises a deterministic drift and a stochastic
diffusion process. A number of important implementation details of the PF are hidden in the process ofresampling
required to ensure convergence and to control the size of the sample set. The reader is referred to introductory texts
in [1,3] and to van der Merwe et al. [10] for a discussion on different resampling strategies.

Measurement Update: The second step within the PF iteration uses the measurement modelp(zk|xk) to esti-
mate the posterior densityp(xk|Zk) by applying Bayes’ theorem:

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(Zk)
(12)

The weights of the distinct samples in Figure 4 are denoted by their respective size. Note that for the measurement
step no weights are taken into account. It is only during the measurement that the samples obtain new weights
based on their amplification or attenuation by the measurement model.

The output of the PF algorithm is a set of samples which is used to approximate the posterior distribution. From
these samples, any estimate of the system state such as expected value of the state

x̂k = E{xk|Zk} ≈
N∑

m=1

w
(m)
k x(m)

k (13)

can be calculated.

5. SIMULATION RESULTS
In order to verify the proposed state-space contour model approaches two different experiments of two-phase flow
fields are performed. The simulations were carried out using a B-spline representation with a circular reference
contour and a6 d.o.f. shape-vector. For the Fourier descriptor approximation2(2N + 1) = 10 Fourier coefficients
were used. The state transition (2) is assumed as a random walk process. The measurement process is modeled
using

p(zk|xk) =
1√

(2π)ndet(Σ)
e−

1
2 (Vm−Vc)

T Σ−1(Vm−Vc) (14)

as likelihood function whereVc denotes the estimated andVm the measured electrode potentials. The Gaussian
nature of the measurement noise has been validated by an analysis ofM = 2000 Monte Carlo trials. During these
simulations the underlying covariance matrixΣ has been estimated. The first test case illustrates the convergence
behavior of the applied PF when the spline representation is used to describe the boundaries of a gas bubble
(εr = 1) in oil (εr = 2). The PF is initialized with 16 particles of circular shape that are uniformly distributed
over the cross-section of the pipe. The reference object, i.e. the water bubble to be located, has an elliptical form.
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Figure 4: Principle of particle filtering. The old sample set atk − 1 approximates the previous state density
p(xk−1|Zk−1). The sizes of the particles reflect their weights that are assigned to them. After resampling and
propagation through the state model, all particles have the same weights. However, samples with small weights
have been removed, while samples with large weights have been replicated. In the measurement step, the measure-
ment modelp(zk|xk) assigns new weights to each sample.

It is indicated as bold dashed contour in Figure 5. The grey contours show the single particles, while the bold
black object stems from the expectation of the posterior state density. The situation after the second iteration of
the PF is depicted in Figure 5(a), while Figure 5(b) points the state after iteration 4. After only four iterations
almost all particles are contracted to the right position. However, the size and the shape still have to be adjusted.
The estimation result after 25 iterations is plotted in Figure 6(a). There are still particles with wrong position,
size and shape originating from the stochastic sampling, but the associated weights of these particles are low. The
expectation of the state density approximates the true bubble reasonably well. The progression of the estimated
center is illustrated in Figure 6(b). It can be seen that after about 5 iterations the estimate for the center is within a
tolerance band where it remains over the iterations.

The second experiment consists of a gas bubble resembling a triangle in oil, shown as bold dashed contour in
Figure 7. Such a shape cannot be emulated with splines based on an affine transformation of a circular reference
shape, as used in our work. However, the true shape of the bubble can be exactly matched with second order
Fourier descriptors. The performance of the PF with spline-based contour model is illustrated in Figure 7, where

(a) Iteration 2. (b) Iteration 4.

Figure 5: Evolution of the PF with B-spline contour model for a gas bubble immersed in oil. The plots show all
particles (thin grey contours) and the expectation of the posterior state density (bold black contour) in comparison
with the true bubble (bold dashed contour) after iterations 2 and 4, respectively.
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(b) Estimated center of the bubble.

Figure 6: Estimation result of the PF with B-spline contour representation after 25 iterations. The estimated
shape (bold line) is almost congruent with the reference shape (dashed line). The chart on the right illustrates
the progression of the estimated center coordinates where the dashed line corresponds to the reference position
(x = y = 0.01m). The center of the pipe is the point of origin.

the expectation of the posterior distribution at different iterations is compared with the true bubble. The filter
is initialized with 30 particles to perform a deeper sampling of the true object shape. The filter estimates after
2, 16 and 30 iterations are shown in the figure. Similar to the first example shown in Figure 5 the true object
position can be reached after a few filter iterations, while a reasonable approximation of the reference shape takes
more iterations. The estimate of iteration 30 is depicted in Figure 7(c), where the shape of the spline contour is
an ellipsoidal approximation of the true bubble. A better match is not achievable with the used contour model.
However, the filter with B-spline model is able to produce robust approximations of complex contours due to the
low number of hidden states. The performance of the PF with a second order Fourier descriptor shape model on

(a) Iteration 2. (b) Iteration 16. (c) Iteration 30.

Figure 7: Contour estimates of the PF with B-spline contour model for a triangle-like gas bubble at different
iterations. The dashed contour indicates the true bubble shape. The used model does not allow an exact match the
true shape.

the same reconstruction problem is illustrated in Figure 8. The evolution of the shape estimates is very similar to
that of the spline-based filter. In contrary to the spline model, the Fourier descriptor model is in principle capable
of exactly matching the reference contour. However, the ECT problem is ill-posed, i.e. the sensitivity of the
measured electrode potentials with respect to higher-order contour details is very poor. Therefore the power of the
Fourier descriptor model cannot be exploited in the present application. As can be seen from Figure 8(c), the shape
reconstruction is qualitatively similar to the spline-based results.

To further study the correlation between the sensitivity of the forward problem and the reconstruction quality,
the PF with Fourier descriptors is applied to a third test case. The reference bubble is a triangle with sharp edges
and a dent on one side. The edges cannot be reconstructed if a gas bubble with a relative permittivityεr = 1 is
assumed. However, in the performed experiment the bubble is assumed to consist of water withεr = 80. This
results in a stronger contrast between the bubble and the background medium and therefore in a higher sensitivity
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(a) Iteration 2. (b) Iteration 16. (c) Iteration 30.

Figure 8: Contour estimates of the PF with Fourier coefficient contour model for a triangle-like gas bubble at
different iterations. The dashed contour indicates the true bubble shape. The used model would allow to exactly
match the true shape, but it cannot be achieved due to the ill-posedness of the problem.

of the forward problem to fine details in the problem region. The filter performance is illustrated in Figure 9. The
edges and the straight lines of the reference contour can be matched much better than for gas bubbles due to the
higher sensitivity of the forward problem.

(a) Iteration 2. (b) Iteration 20. (c) Iteration 40.

Figure 9: Contour estimates of the PF with Fourier coefficient contour model for a triangle-like water bubble with
sharp edges at different iterations. The dashed contour indicates the true bubble shape. Due to the high permittivity
contrast between water and oil the details of the true contour can be better matched than for gas bubbles.

6. CONCLUDING REMARKS
In this contribution a novel approach to describe closed contours in the state-space for two-phase fields in ECT
is proposed. The boundary of the object to be located, is modelled by a parameterized curve. Two different ap-
proaches, a description with B-splines and a Fourier representation are investigated and compared. In order to take
measurement uncertainties into account, the inverse problem is recast in form of statistical inference and solved
by means of particle filtering. A kind of regularization is implicitly achieved which can be directly interpreted in
the object domain as it relates to smooth contours. With B-spline representation with the affine model the object
position and the fundamental component of the shape can be reconstructed reasonably well. In general, Fourier
descriptors are able to model more complex contours. In fact, due to the poor sensitivity of the forward problem
in case of oil-gas flow, only results comparable to B-splines are achievable. However, for problems with higher
sensitivity, e.g. oil-water flow, even higher order components of the object can be resolved with Fourier descriptors.
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